Table of Contents

How to Find a Science Fair Project Idea .. 3
Ways to Support the Student ... 4
Safety Rules .. 5
Research Information ... 7
Basic Types of Science Fair Projects .. 9
Investigation - Steps to Follow* ... 10
Investigation Worksheet* .. 12
Investigation- Example Science Project ** .. 13
Demonstration - Steps to Follow .. 16
Demonstration Worksheet .. 17
Collection - Steps to Follow ... 18
Collection Worksheet ... 19
Judging Criteria ... 20
How to Display Your Project ... 21
Examples of Displays ... 22
How to Find a Science Fair Project Idea

Start with a question
Children are always asking “Why?” Use this as an opportunity to have them find the answers to their own questions. Why do I have to go to bed so early? Why do I have to eat my vegetables? Why is a plant green?

Think of problems around you
Look in a newspaper. There are problems like earthquakes happening throughout the world. What is an earthquake? How does it happen? Why do they happen? Can they be prevented? What types of buildings hold up better during an earthquake?

Watch commercials on TV or read the advertisements in magazines and newspapers and question their claims. Will one type of toothpaste make my mouth smell better than another? Which scooter is the best to buy? Which cereal tastes better?

Add to others ideas
Look at sample projects, projects in books or projects from last year’s science fair. Add your own question and your own ideas to them.

Don’t just use these ideas. Take these ideas and add something of your own. For example, change "Are dogs colorblind?" to "Are cats colorblind?" Or look at a different one of the 5 senses of dogs and test their sense of taste.

Choose a topic that interests YOU
Choose a topic that you find interesting, one that you will enjoy reading about and sharing with others. You won't be able to give it your all unless it can keep your interest.

Start early
A good project can’t be started at the last minute or even in the last few days before the Science Fair. You should start early enough to allow yourself time for planning and experimentation.

Your project doesn’t have to be complicated
The purpose of a science fair is to encourage you to investigate and learn about a topic. Don’t feel that your topic must be complex and difficult. It is better to pick a simpler project and be able to speak confidently on Science Fair Day than to choose a difficult one and be unsure.

Do your own work
It’s okay to get help on a few aspects of your project, but it has to be YOU, not someone else, who has done the project. How can you talk about the project if you haven't done it?
Discuss the student’s interests with him or her. Discuss the different types of science fair projects and which type of project the child is most interested in.

Help your child choose an appropriate topic.
- Help find a topic that will be of interest to the student.
- Narrow the topic so the child can complete the project. The student should focus on a specific area.
- The student should select a topic that can be understood and explained to the judges.
- Make sure that the project is safe, that poisons, dangerous chemicals, and open fires, for example, are avoided.
- Make sure it is within your budget.
- Make sure that you have access to any equipment that the project would require.

Help your child at home.
- Provide necessary working space and materials.
- Provide time needed to work on the project and stress the need to start early.
- Provide guidance, support and encouragement. It’s fun to help the student with the project. However, it is the student who has to do the majority of the work.

Keep it simple. Science Projects can become confusing, so keep the experiment simple. This is actually very important to the scientific process: the simpler the experiment, the less likely that some unknown variable caused the result. If you start simple, the experiment will stay manageable.

What is simple? As an example, a student could do an experiment to see what brand of battery lasts longer. Choose just two brands of batteries -- not every battery on the market. For detergent, the same thing applies. If the experiment involves plants, choose two types of plants. Which lasts longer, Duracell or Eveready? Which cleans better, Tide or Bold? What grows better in damp soil, marigolds or periwinkles?

Do not worry about the project’s performance at the Science Fair. If strengthened thinking skills and increased knowledge have occurred, then a prize has truly been won.
Safety Rules

Electrical Connection (if your project must be plugged in)
- Notify the science fair coordinator at least 1 week in advance.
- Bring your own UL-listed 3-wire (grounded) extension cord that is appropriate for the load and equipment.
- Maximum amperage = 5 amps
- Maximum wattage = 500 watts

Safety
- Proper attention to safety is expected of all science fair participants.
- Compliance with the following requirements is expected when operating all exhibits.
- In addition, common sense must be used with regard to safety.

General Safety:
- Anything which could be hazardous to the public is PROHIBITED. This includes the following:
 - Live disease-causing organisms which are pathogenic to humans or other live vertebrates
 - Hazardous microbial cultures and fungi, live or dead, including unknown specimens
 - Flames, open or concealed
 - Highly flammable display materials
 - Dangerous chemicals including caustics and acids
 - Highly combustible solids, fluids, or gases
- No human blood, blood products or other body fluids shall be used in any project unless the student strictly adheres to the rules of the International Science and Engineering Fair.
- Any apparatus with unshielded belts, pulleys, chains, or moving parts with tension/pinch points may not be operated.
- Any apparatus producing temperatures that will cause physical burns must be adequately insulated.
- Any use of lasers must strictly conform to the rules of the International Science and Engineering Fair.
- No live animals.
- No dry ice.
Electrical Safety:

- Batteries with open top cells are not permitted. Other types of batteries may be used for electrical power.
- High voltage equipment (above 12V DC or 120 V AC), wiring, switches, or other components are NOT permitted.
- Large vacuum tubes or dangerous ray-generating devices MUST be properly shielded.
- Electrical circuits for 110-volt AC MUST have a UL-listed cord of proper load-carrying capacity that is equipped with a standard grounded plug (3-wire).
- Electrical connections in 110-volt circuits MUST be soldered or made with UL-listed connectors, and connecting wires must be properly insulated.
- All wiring MUST be properly insulated with appropriate overcurrent safety devices (fuses). Nails, tacks, or uninsulated staples MUST NOT be used to fasten wiring.
- Bare wire and exposed knife switches may be used only on circuits of 12 volts or less; otherwise standard enclosed switches are required.
- Exposed electrical equipment or metal that is liable to be energized must be grounded or shielded with a grounded metal box or cage to prevent accidental contact.
- There must be an accessible, clearly visible on/off switch or other means of disconnect from the power sources.

Once you have decided on a project, it is time to do research to find out more information. This is a list of call numbers and subject headings that will help you in any library to find information on Science Fair topics. Resources and assistance are available here at the Sheridan Green Library. Local libraries also have extensive collections of materials and librarians who are available to assist and support.

Call Numbers and Subject Headings

- Science exhibitions 507.8
- Science experiments 507.8
- Science projects 507.8
- Scientific recreations 507.8, 793.8

For more subject-specific experiments, look in that specific area in the library, for example: astronomy experiments or biology experiments.

Helpful Websites

- http://www.ipl.org/div/projectguide/ Internet Public Library Science Fair Project Resource Guide. Dozens of nicely organized links, samples, ideas, magazines, and other resources for science fairs.

- http://scienceclub.org The award-winning Science Club website full of project ideas, reference information, and a science fair idea exchange.

- http://www.sciencebuddies.org/

- http://www.csef.colostate.edu/Resources.htm

- http://www.kevintemmer.com/ Fun Science Fair video

Science fair project ideas

http://www.ipl.org/div/kidspace/ Internet Public Library links page of science fair information sites

Renewable Energy Projects and Resources

http://www.juliantrubin.com/solarprojects.html Julian Trubin's amazing collection of projects and links. This site won a Scientific American web award.

http://www.energyquest.ca.gov/projects/index.html

Basic Types of Science Fair Projects

There are three main types of science fair projects:
- Investigation - Using the Scientific Method
- Demonstration - Model or Device
- Collection

Investigation
Investigate a problem to find out possible answers. Start with a question or a problem, such as, “What do plants need to grow?” Plan an experiment to find out answers to the questions you have. This type of project uses scientific skills to discover events and patterns in the environment. Make a display to show what you have discovered. You must be able to explain your investigation.

Demonstration- Model or Device
Construct a model or device to show how something works. Start with a question, such as, “How does the heart work?” Do some research to find out the answers to the question. Then make a model or device to demonstrate the information you learned. Some examples of models of scientific devices are an incubator, homemade camera, crystal radio, homemade thermometer, kits, seismograph, bridge/structure, microscope, oil well model, solar house, hydroelectric dam, etc. You must be able to explain your demonstration.

Collection
Make a collection. Start with a question, such as, “What types of trees grow in my neighborhood?” Collect and research objects that answer your question. For example, collect leaves from various trees and then find out what type of tree each leaf is from. Then display your collection to show what you found out and to teach others about your subject. You must be able to explain your collection.
Investigation - Steps to Follow*

1. **Initial Observation – Ask a Question**
 You notice something, and wonder why it happens. You see something and wonder what causes it. You want to know how or why something works. You ask questions about what you have observed. The first step is to write down your question.

2. **Information Gathering**
 Pick a topic that you want to investigate. Read books, magazines or ask professionals who might be able to guide you in your area of interest. Keep track of where you got your information.

3. **Title the Project**
 Choose a title that describes what you are investigating. The title should summarize what the investigation will deal with.

4. **State the Purpose of the Project**
 What do you want to find out? Write a statement that describes what you want to do. Use your observations and questions to write the statement.

5. **Make a Hypothesis**
 Predict answers to the questions you have. This can be a list of statements describing how or why you think the observed things work. The hypothesis must be stated in a way that can be tested by an experiment.

6. **Design an Experimental Procedure to Test Your Hypothesis**
 Design an experiment to test each hypothesis. Make a step-by-step list of what you will do to answer your questions. This list is called an experimental procedure.

 Guidelines for Experimental Procedures
 - Select only one thing to change in each experiment. Things that can be changed are called variables.
 - Change something that will help you test your hypothesis.
 - The procedure must tell how you will change this one thing.
 - The procedure must explain how you will measure the amount of change.
 - Each type of experiment needs a "control" for comparison so that you can see what the change actually did.

7. **Obtain Materials and Equipment**
 Make a list of the materials needed to do the experiments. Make sure you have all materials before beginning the experiment. One item you will need is a display board.

*Much of this information was extracted from the Internet:
http://www.isd77.k12.mn.us/resources/cf/SciProjIntro.html
The Internet site was written by David Morano, Associate Professor, Mankato State University*
8. Do the Experiment and Record Data
As you do the experiment, write down all steps that you follow. This information, or data, is extremely important. Accurately measure and keep track of all things. Data can be amounts of chemicals used, how long something is, the time something took, etc. If you are not making any measurements, you probably are not doing an experimental science project.

9. Record Your Observations
Observations can be written descriptions of what you noticed during an experiment, or problems encountered. Keep careful notes of everything you do, and everything that happens. Observations are valuable when drawing conclusions, and useful for locating experimental errors. Photographs will be very useful in your final display. Make sure to take pictures of things you will not be able to display, such as live animals.

10. Perform Calculations (if needed)
Perform any math calculations needed to change data recorded during experiments into numbers you will need to make tables, graphs or draw conclusions.

11. Summarize Results
Summarize what happened. This could be in the form of a table of numerical data or graphs. It could also be a written statement of what occurred during the experiments.

12. Draw Conclusions
Using the trends in your experimental data and your experimental observations, try to answer your original questions. Is your hypothesis correct? Now is the time to pull together what happened, and assess the experiments you did.

Other Things You Can Mention in the Conclusion
- If your hypothesis is not correct, what could be the answer to your question?
- Do you need to change the procedure and repeat your experiment?
- Summarize any difficulties or problems you had doing the experiment.
- What would you do differently next time?
- List other things you learned.

What If My Science Project Doesn’t Work?
No matter what happens, you will learn something. Science is not only about getting "the answer." Knowing that something didn’t work is actually knowing quite a lot. Experiments that don’t turn out as planned are an important step in finding an answer.
Investigation Worksheet*

Use this worksheet to guide you through your project. Fill it out as you follow the steps in an investigative science project. Some of the steps require more writing and you will need to keep that information in a notebook. In that case, indicate where the information is.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Initial Observation</td>
<td>(What is your question?)</td>
</tr>
<tr>
<td>2. Gather information</td>
<td>You will probably keep a notebook or note cards for this. It's too much to put in this worksheet, but make sure you perform this step</td>
</tr>
<tr>
<td>3. Project title</td>
<td></td>
</tr>
<tr>
<td>4. Purpose of the project</td>
<td></td>
</tr>
<tr>
<td>5. Hypothesis</td>
<td></td>
</tr>
<tr>
<td>6. Experimental procedure to test hypothesis</td>
<td></td>
</tr>
<tr>
<td>7. Materials and Equipment you will need</td>
<td></td>
</tr>
<tr>
<td>8. Do the experiment and record data</td>
<td>This data will be recorded in your notebook, too. Just make sure that you perform this step.</td>
</tr>
<tr>
<td>9. Record your observations</td>
<td>Keep careful notes in your</td>
</tr>
<tr>
<td>10. Calculations</td>
<td>(Optional)</td>
</tr>
<tr>
<td>11. Summarize results</td>
<td></td>
</tr>
<tr>
<td>12. Conclusion</td>
<td></td>
</tr>
</tbody>
</table>
Investigation- Example Science Project **

The Effect of Salt on the Boiling Temperature of Water

Initial Observation
Why do the cooking instructions tell you to add salt to water before boiling it?

Project Title
The Effect of Salt on the Boiling Temperature of Water

Purpose of the Project
To find out how table salt affects the boiling temperature of water.

Hypothesis
Adding table salt to boiling water will cause the water to boil at a higher temperature.

Materials and Equipment
- Table Salt
- Distilled Water
- 2 Quart Cooking Pot
- Pint measuring cup
- Teaspoon and tablespoon measuring spoons
- Thermometer
- Stirring spoon

Experimental Procedure
1. Boil one quart of distilled water on a stove.
2. Measure the temperature of the boiling water. Record the highest temperature reading. This is the control to compare with.
3. Measure out table salt using a kitchen measuring spoon. Level the spoonful.
4. Add the measured salt to the boiling water and stir.
5. Measure the temperature of the boiling water with the salt in it. Record the highest temperature reading.
6. Repeat for other amounts of salt.

** This example project was written by David Morano, Associate Professor Mankato State University
Data

Data Obtained: 2/25/95, Mankato, MN

<table>
<thead>
<tr>
<th>Amount of boiling water</th>
<th>2 Cups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature of boiling water (Control)</td>
<td>212.9° F</td>
</tr>
<tr>
<td>Amount of table salt added to boiling water: Run #1</td>
<td>1 Tablespoon</td>
</tr>
<tr>
<td>Temperature of boiling water after adding salt: Run #1</td>
<td>215.6° F</td>
</tr>
<tr>
<td>Additional amount of table salt added to boiling water: Run #2</td>
<td>1 Tablespoon</td>
</tr>
<tr>
<td>Temperature of boiling water after adding salt: Run #2</td>
<td>218.3° F</td>
</tr>
</tbody>
</table>

Experimental Observations

When the salt was added to boiling water, it bubbled up more, and then stopped boiling. Shortly afterwards, it boiled again.

If the thermometer extends beyond the outside of the pot it reads a higher temperature. Heat from the stove burner makes the thermometer read higher. Keep the thermometer over the pot when making temperature measurements.

Calculations

- Total amount of table salt added for Run #1: 0 + 1 = 1 Tablespoon
- Total amount of table salt added for Run #2: 1 + 1 = 2 Tablespoon

Results

<table>
<thead>
<tr>
<th>Temperature of boiling water (Control)</th>
<th>212.9° F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount of table salt added to boiling water: Run #1</td>
<td>1 Tablespoon</td>
</tr>
<tr>
<td>Temperature of boiling water after adding salt: Run #1</td>
<td>215.6° F</td>
</tr>
<tr>
<td>Total amount of table salt added to boiling water: Run #2</td>
<td>1 Tablespoon</td>
</tr>
<tr>
<td>Temperature of boiling water after adding salt: Run #2</td>
<td>218.3° F</td>
</tr>
</tbody>
</table>
Results continued

Amount of Table Salt Added Versus Water Boiling Temperature

Conclusions

- Is the hypothesis correct?
 Yes. Adding table salt to water causes the water to boil at a higher temperature.
- Problems with doing the experiments
 The temperature readings were hard to make. Gloves had to be worn to keep my hands from getting too hot. Had to be careful that the stove heat was not hitting the thermometer.
- Other things learned
 Be careful when adding salt to boiling water. It makes the water boil vigorously for a second or two.
Demonstration - Steps to Follow

1. **Initial Observation - What Is Your Question?**
 You notice something, and wonder why it happens. You see something and wonder what causes it. You want to know how or why something works. You ask questions about what you have observed. The first step is to write down your question.

2. **Information Gathering**
 Find out about how to make a model or device that will show the answer to your question. Read books, magazines or ask professionals who might know in order to learn about how it works. Keep track of where you got your information.

3. **Title the Project**
 Choose a title that describes the model or device you will make.

4. **State the Purpose of the Model or Device**
 What do you want to find out? Write a statement that describes the purpose of your model or device. What is it used for?

5. **Design Your Model or Device**
 Design model or device to show the answer to your question. Make a step-by-step list of what you need to do to build your model or device.

6. **Obtain Materials and Equipment**
 Make a list of the things you need to build your model or display, and get them. You will need a display board.

7. **Build Your Model or Device**
 Build your model or device. Photos, sketches and pictures will be very useful in your final display. Show the steps you took in the building process. Make sure to take photos of things you will not be able to display, such as live animals.

8. **Test Your Model or Device**
 Now that it is finished does it work? More research may be needed to find out the answers to any problems.

9. **Summarize the Results**
 Did the model or device work? What changes could be made? Does it serve the purpose you wanted it to? (Step 4)
Demonstration Worksheet

Use this worksheet to guide you through your project. Fill it out as you follow the steps in making your project or model.

1. **What is your question?**

2. **Gather information**
 You will probably keep a notebook or note cards for this. It's too much to put in this worksheet, but make sure you perform this step.

3. **Project title**

4. **Purpose of the model or device**

5. **Design of model or device (steps to building it, sketch of model, etc.)**
 If you draw a sketch, you may want to use a piece of drawing paper.

6. **Materials and Equipment you will need.**

7. **Build your model**

8. **Test your model. Record your observations**
 Keep careful notes in your notebook.

9. **Summarize result**

What If My Science Project Doesn’t Work?

No matter what happens, you will learn something. Science is not only about getting "the answer." Knowing that something didn’t work is actually knowing quite a lot. Models that don’t turn out as planned are an important step in finding an answer.
1. **Initial Observation - What is Your Question?**
 You notice something, and wonder why it happens. You see something and wonder what causes it. You want to know how or why something works. You ask questions about what you have observed. The first step is to write down your question.

2. **Title the Collection**
 Choose a title that describes the collection you are getting.

3. **State the Purpose of the Collection**
 What do you want to find out? Write a statement that describes the purpose of your collection. Why are the things you are collecting important or interesting?

4. **Begin Collecting!**

5. **Information Gathering**
 Find out about the things you have collected. Read books, magazines or ask professionals who might know in order to learn about how it works. Keep track of where you got your information.

6. **Design Your Collection Layout**
 What is the best way to organize and present your collection? What order do you want to put them in? How will they look best?

7. **Obtain Materials and Equipment**
 Make a list of the things you need to make your display, and get them. You can use a display board to show information you have learned.

8. **Create the Display of Your Collection**
 Make the display for your collection. Label all objects. If you cannot mount your collection on the display board (example- rocks), mount them on something sturdy, which can be placed in front of the display board.

9. **Summarize the Results.**
 What did you learn about your collection? Was there anything you wanted, but couldn’t find for your collection?
Collection Worksheet

Use this worksheet to guide you through your project. Fill it out as you follow the steps in making your collection.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. What is your question?</td>
<td></td>
</tr>
<tr>
<td>2. Project title</td>
<td></td>
</tr>
<tr>
<td>3. Purpose of the collection</td>
<td></td>
</tr>
<tr>
<td>4. Collect!! Gather information</td>
<td>You will probably keep a notebook or note cards for this. It’s too much to put in this worksheet, but make sure you perform this step.</td>
</tr>
<tr>
<td>5. Design your collection layout</td>
<td>If you draw a sketch, you may want to use a piece of drawing paper.</td>
</tr>
<tr>
<td>6. Materials and Equipment you will need</td>
<td></td>
</tr>
<tr>
<td>Create your display</td>
<td></td>
</tr>
<tr>
<td>Summarize results</td>
<td></td>
</tr>
</tbody>
</table>
Judging Criteria

Please Note - K-2 students will receive a blue ribbon for participation. They will need to make a presentation to gain this valuable experience. For grade 3-5 students, judges will evaluate each project using the following rubric or criteria. Every yes answer receives a point. The more things on this list that you include, the higher your score will be. Colored ribbons will be awarded in the following categories: 19 to 20 points, 17 to 18 points, and 16 or less points.

<table>
<thead>
<tr>
<th>Scientific Thought</th>
<th>Total ________</th>
</tr>
</thead>
<tbody>
<tr>
<td>The purpose of the project is clearly stated?</td>
<td>Y N</td>
</tr>
<tr>
<td>Is the project presented logically and accurately?</td>
<td>Y N</td>
</tr>
<tr>
<td>Does the project provide adequate information about the subject?</td>
<td>Y N</td>
</tr>
<tr>
<td>Is the project complete and easy to follow</td>
<td>Y N</td>
</tr>
<tr>
<td>Does the project show student research and learning in a scientific area of interest?</td>
<td>Y N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Visual Information</th>
<th>Total ________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does the display show what the student learned about the topic?</td>
<td>Y N</td>
</tr>
<tr>
<td>Is the display age-appropriately neatly finished and of high quality?</td>
<td>Y N</td>
</tr>
<tr>
<td>Does the display have a graph, chart, table, diagram or pictures to explain the project?</td>
<td>Y N</td>
</tr>
<tr>
<td>Does the written or typed material show age-appropriate attention to spelling and grammar?</td>
<td>Y N</td>
</tr>
<tr>
<td>Does the labeling of the project (pictures, graphs, model, device, etc.) support understanding?</td>
<td>Y N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ORAL PRESENTATION TO JUDGES</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can the student respond to the following questions:</td>
<td></td>
</tr>
<tr>
<td>How did you come up with the idea for your project?</td>
<td>Y N</td>
</tr>
<tr>
<td>What procedures or steps did you follow when doing your project?</td>
<td>Y N</td>
</tr>
<tr>
<td>What did you learn from the project?</td>
<td>Y N</td>
</tr>
<tr>
<td>Where did you get your information for your project?</td>
<td>Y N</td>
</tr>
<tr>
<td>How long did it take you to complete your project?</td>
<td>Y N</td>
</tr>
<tr>
<td>Who helped you with your project and what did they do?</td>
<td>Y N</td>
</tr>
<tr>
<td>What is the most interesting or unusual thing you learned from doing your project?</td>
<td>Y N</td>
</tr>
<tr>
<td>What surprises or problems did you have during the project?</td>
<td>Y N</td>
</tr>
<tr>
<td>What is one new vocabulary word you learned from this project?</td>
<td>Y N</td>
</tr>
<tr>
<td>What would you do differently if you did this project again?</td>
<td>Y N</td>
</tr>
</tbody>
</table>

Award 1 point per Y answer circled. Total Points:______
How to Display Your Project

All projects will be displayed on tables in the gym. Your own creativity will determine how you make your display. However, this diagram gives an example of a basic 3-sided display. Three-sided display boards are available at any craft store. You may also make a display that meets the following criteria:

- The display must be freestanding. Project materials may also be placed on the table top in front of the display. Nothing will be taped to the table or wall.
- Minimum display size is 16 inches high and 24 inches wide.
- Maximum display size is 36 inches high and 36 inches wide. The width is as measured when set up on a table surface.

If poster board is used for this type of display, it must be reinforced with heavy cardboard or wood. Poster board alone will collapse.

Showcase
Front View

This is an example of how you can display an investigative project. These dimensions are not required. See above for size requirements.

1. Graphs and charts
2. Perhaps you would choose to display photographs or drawings of your work
3. Equipment and your research paper can be placed on the table

Examples of Displays

These displays are examples from previous Sheridan Green Science Fairs.